ECE - Electrical and Computer Engineering

ECE 211 - Digital Circuits I

This course introduces the analysis and design of digital circuits. Topics include: combinational circuit analysis and design, number representations and codes, addition circuits, analysis and design of synchronous circuits, programmable logic array, programmable array logic and field-programmable gate array (FPGA). The course includes a design project using an FPGA.

ECE 212 - Digital Circuits II

This course covers the design of digital systems using a microcontroller, and field programmable gate array. Topics include: register transfers; special-purpose computer architecture; microcontroller architecture, instructions, and interfacing; assembly language programming; C programming. Lecture/discussion/ laboratory.

Prerequisite
ECE 211

ECE 221 - Basic Electric Circuit Analysis

Introduces students to concepts, ideas, and techniques that are fundamental to the analysis of linear electrical circuit models. Circuit analysis techniques are derived from Kirchhoff's Laws and topics covered include DC circuits, AC circuits, RC/RL circuits, operational amplifier circuits, and AC power calculations. Laboratory exercises reinforce theories presented in lectures. Lecture/laboratory.

Prerequisite
MATH 162

ECE 313 - Computer Organization

The features of a digital computer are examined at various levels. Topics include: CPU architecture and instruction sets (machine level), the microprogramming level, virtual memory (operating system level), the assembly language level. Lecture/discussion.

Prerequisite
ECE 211

ECE 322 - Introduction to Solid State Devices and Circuits

The course begins with discussion of semiconductor devices to obtain their volt-ampere behavior. First order models for the devices are developed and used to analyze both analog and digital circuits. The use of computer-aided design programs is presented. Required of junior electrical engineering students. Lecture/discussion/laboratory.

Prerequisite
ECE 221 and pre/corequisite: MATH 264
Corequisite
ECE 331

ECE 323 - Analysis and Design of Solid State Circuits

The course continues to develop the topics introduced in ECE 322 with emphasis placed on more complex circuits used in analog and digital applications. Extensive use is made of simulation programs as an aid in the design process. Required of junior electrical engineering students. Lecture/discussion/ laboratory.

Prerequisite
ECE 322

ECE 331 - Signals and Systems

Fourier, Laplace, and Z-transforms are developed and applied to the analysis of electrical circuits. Transient and frequency characteristics of transfunctions are discussed. Required of junior electrical engineering students. Lecture/ discussion.

Prerequisite
ECE 221, and Pre/corequisite: MATH 264

ECE 332 - Communications Systems

This course is devoted to a study of systems used to transmit information. Continuous (Analog) and Discrete (Digital) Systems, and the principles of frequency division and time division multiplexing are treated. The effect of noise on the various systems is investigated. Required of junior electrical engineering students. Lecture/discussion.

Prerequisite
ECE 331

ECE 341 - Engineering Electromagnetics

Maxwell's Equations in integral and differential forms are introduced to describe the propagation of electromagnetic waves in a variety of media. Necessary vector integration and differentiation techniques are developed. Required of junior electrical and computer engineering majors. Lecture.

Prerequisite
MATH 264; PHYS 133

ECE 390-392 - Independent Study or Research

An opportunity for selected students to undertake independent study or research projects during the senior year. Each student is required to submit work or demonstrate a project embodying the results of the study or research. The proposal for this work is submitted to a faculty adviser and is also submitted to the department head for approval. This work may be substituted for certain technical courses normally required. Hours by arrangement.

ECE 393-399 - Special Topics

These courses consider recent advances and/or subjects of current interest to students and members of the staff. The special topic for a given semester will be announced prior to registration.

Prerequisite
Senior standing in electrical engineering

ECE 414 - Embedded Systems

This course covers the design of stand-alone digital systems utilizing embedded microcontrollers. Both software and hardware are covered. Topics include microcontroller architecture, peripheral functionality and utilization, performance and power consumption, hardware interfacing, interrupts, and real-time operating systems.

Prerequisite
ECE 212 (formerly ECE 313)

ECE 415 - Computer Arithmetic Circuits

This course introduces algorithms and computing circuits which are applicable to performing addition, subtraction, multiplication, and division. The design trade-offs encountered in the development of an Arithmetic Logic Unit for a digital computer are considered. Both fixed-point and floating-point arithmetic are covered. Lecture/discussion.

Prerequisite
ECE 212

ECE 424 - Analog Integrated Circuit Design

This course covers the design of electronic integrated circuits and subsystems for use in optical, wireless, and wired communication systems. Topics include analog-to-digital and digital-to-analog conversion, anti-alias, and reconstruction filter design, clock and data recovery using Phase-Locked Loop (PLL) based systems. An IC design project is an integral part of the course.

Prerequisite
ECE 323, ECE 332

ECE 425 - VLSI Circuit Design

Introduces the design of Very Large Scale Integrated circuits, with emphasis on digital CMOS design. Topics include MOS transistor theory, basic IC processing, static and dynamic CMOS, VLSI system organization, and CAD tools for design and simulation. Students design projects to be fabricated and returned the following semester. Lecture/ discussion/laboratory.

Prerequisite
ECE 322

ECE 427 - Sensors and Electronic Systems

Devices and interface electronics used to sense quantities such as light, temperature, and motion are discussed. A general overview of sensor performance characterization is presented and mathematical modeling techniques are developed, leading to interface electronics topologies and application specific sensor applications.

Prerequisite
ECE 322, ECE 331

ECE 433 - Industrial Electronics and Control Systems

Feedback control systems are studied in both the frequency and time domain. Topics include detailed system modeling, stability and error analysis, design to meet specifications, and discussion of system integration in a manufacturing environment. Lecture/discussion/ laboratory.

Prerequisite
ECE 331

ECE 434 - Digital Signal Processing

This course covers discrete fourier transforms (DFT and FFT), the sampling theorem and its consequences, Z transforms theory, recursive digital systems, and digital filter design. Lab involves implementation of digital signal processing algorithms in real time using DSP hardware. Lecture/laboratory.

Prerequisite
ECE 331, ECE 212

ECE 435 - Speech and Image Processing

Introduces interactive information systems utilizing sight and sound. Speech processing, recognition, synthesis, and coding, as well as image understanding and compression technologies, are discussed. Acquaints students with speech production, extraction of recognizable phonic features, recognition of speech templates, edge detection, and image understanding. Lecture.

Prerequisite
ECE 331

ECE 437 - Biomedical System Modeling and Analysis

This course introduces the use of engineering techniques to simulate and analyze biomedical systems and applications in medicine. Major physiologic functions, such as nerve action potentials, skeletal muscle contraction, human vision system, cardiovascular system, respiratory system, endocrine system, kidney, and prosthetic devices, are modeled by electrical circuits or differential equations and simulated using computer software.

Prerequisite
MATH 264, PHYS 131, ECE 331; or permission of instructor. Not open to students who have taken ME 489.

ECE 445 - Physics of Semiconductor Devices

This course presents a quantitative analysis of both bipolar and field effect transistors. The device equations are developed from fundamental physical processes such as carrier densities, transport processes, and generation-recombination mechanisms. Required of senior Electrical and Computer Engineering majors. Lecture.

Prerequisite
ECE 341, ECE 322

ECE 446 - Microwave Systems

Analysis and design of modern microwave systems such as satellite and cellular communications and radar. Devices, circuits, and subsystems are presented with an emphasis on theory of operation and impact on overall performance. Application of technologies to the current microwave communications industry is covered. Students complete a design project using modern microwave CAD software (Ansoft Serenade or Agilent Advanced Design System and Sonnet) and theory presented in class.

Prerequisite
ECE 341

ECE 451 - Introduction to Electrical Power Systems

This course deals with the elements of the transmission and distribution of electrical power. Starting with transmission lines, the course will develop the general representation of power systems. Load flow studies and the economic operation of power systems are treated. Finally, symmetrical components, transients and system stability are considered. Lecture/discussion.

Prerequisite
ECE 331

ECE 492 - Electrical & Computer Engineering Design Project II

In this course a significant design project is completed. Students are required to integrate and apply their knowledge of various topics from the ECE curriculum and to learn new material, including multidisciplinary material outside ECE. Successful project completion will require independent and team design work. Student teams will follow a formal, requirements-oriented design process and apply project management techniques to manage the design progress. The course culminates in formal acceptance testing, demonstration, and delivery. [W]

Prerequisite
ECE 491

ECE 495-496 - Thesis

This program is designed in accordance with the honors program of the College. Enrollment is limited to seniors. These courses may not be used for electrical and computer engineering or computer science credits. [One W credit only upon completion of both 495 and 496]

ECE 205 - Human Machine & Advances in Medical Technology

From smart algorithms analyzing wearable data to the development of brain-machine interface, significant advances have been made in the development of medical devices for treating and assisting patients. In this team-taught course we will explore the physiological changes (i.e. chemical and electrical signals) associated with voluntary and involuntary physiological activities, such as brain and heart function. We will develop an understanding of current technology and discuss the ethical issues surrounding the development of future medical instrumentation. [STSC, V]

ECE 491 - Electrical & Computer Engineering Design Project I

This course introduces the basics of team based project engineering, gaining skills that will prepare students for entry into the professional engineering workforce. Students are introduced to a formal requirement-oriented design process and acceptance testing. They learn project management techniques to manage engineering work. Written and oral communication skills are emphasized. The course culminates in a formal critical design review for the significant design project to be completed in the second term.

Prerequisite
ECE 323, 332, 341 and CS 205 or ECE 414